All Rights Reserved, Copyright (C)2010, National Institute for Land and Infrastructure Management

All Rights Reserved, Copyright (C)2010, National Institute for Land and Infrastructure Management

空港舗装の構造設計法の改定

~H20年7月 仕様規定型設計法 舗装厚は経験的設計法により決定 アスファルト舗装の場合 CBRと設計反復作用回数 から決定

H20年7月~

性能規定型設計法
 性能照査方法は経験的 or 理論的設計法による
 アスファルト舗装の場合
 舗装内ひずみ,離着陸回数,疲労破壊曲線
 から決定

経験的設計法の一例						
ファファルトは壮の甘進は壮原け	設計反復作用回数の区分					
「人ノアルト舗装の基準舗装厚は	路床の	а	b	C	d	е
米国陸軍工兵隊の実験式を基に	EXELCOR	6000回	10000回	20000回	40000回	80000回
	2	253	267	285	304	322
路床の設計CBR	2.5	223	235	251	268	284
现到后有作用同粉	3	201	211	226	240	255
設計及復TF用凹剱	3.5	183	192	206	219	232
から決定される	4	108	164	189	107	109
	4.0	145	153	164	174	185
	6	128	135	144	154	163
	7	114	120	129	137	145
メリット	8	103	108	116	123	131
	9	93	98	105	112	119
・非常に間便	10	86	90	96	102	109
	11	79	83	89	95	101
	12	74	78	83	89	94
デメリット	14	65 65	/3	78 74	83 78	83
	15	62	65	70	75	79
・空港の実情に合わせた	16	59	62	67	71	75
フレキシブルた設計が困難	17	57	60	64	68	72
ノレイノノルな設計が必要	18	54	57	61	65	69
・設計反復作用回数が多いときの	19	52	55	59	63	66
	20以上	50	53	57	60	64
舗装厚の昇定法に限界?						

まとめ ・施工性や計測の正確性等を考慮すると 箱抜きし、常温目地材を用いることによる埋設方法が最適。 箱抜き容積はなるべく小さくし、常温混合物は用いない方がよい。 ・光ファイバにより計測したひずみは、解析値とは一致しないものの、 繰返し走行によるひずみの増大、 切削オーバーレイによるひずみの一時的な減少など、 走行に伴うひずみの増減の傾向を確認できた。 ・今後、FWD調査などと組み合わせた構造評価手法を検討予定。