An Estimation of the Economic Direct Loss Caused by Blockade of International Straits and Canals on Global Trade and Economy

Yasuhiro AKAKURA¹ and Kenji ONO²

¹ National Institute for Land and Infrastructure Management, MLIT

& Graduate School of Management, Kyoto University

² Graduate School of Management, Kyoto University Email: akakura-y83ab@mlit.go.jp

Abstract

The highly frequent, stable and inexpensive maritime transportation has contributed great progress of economic globalization. The international specialization, which is the subdivision of manufacturing process and the overseas transfer of some process, has developed, and the trade volume of intermediate goods has increased greatly. However, the advanced global supply-chain represented by the Just-in-Time system has been much vulnerable against a disruption of transport. Moreover, world shipping operations concentrate at major straits and canals, which are called chokepoints. Therefore, a blockade of any one of these chokepoints will result in the devastating impact on the global trade and economy.

This study estimates the economic direct loss caused by the blockade of chokepoints: the Strait of Malacca and Hormuz, and the Suez and Panama Canal. First, ship passages through these chokepoints are identified by the ship movement data, which are tracked by AIS (Automated Identification System) signals. Then, through cargo volumes and values are estimated from the shipping capacities. It is noted that proportions of cargo volumes and values through these chokepoints to the global maritime trade volume have increased. The total cargo value passing Straits of Malacca amounts to US\$ 3 trillion, which accounts for 18% of global trade.

In addition, the past natural and man-made disasters, which had the possibility to cause the blockade, are collected to prepare various loss scenarios. At the early stage of a blockade, the relevant transport will temporally stop due to the maelstrom of traffic and, many cargoes will probably shift to the air transportation. When the blockade continues, the shipping lines will seek detour routes, for which some additional navigation cost and time will be incurred. Functions of the ports next to the chokepoint will be temporally paralyzed. The direct economic loss is calculated by considering these various additional costs. The scale of the loss may reach huge amount, if the US\$ 7 billion direct loss of the 2014/15 US West Coast case is referred.

Until now, it is hard to say that the importance of chokepoints is recognized sufficiently. Except for some studies in particular straits and for limited cargo commodities, there seems no previous studies that challenged to quantification of an impact of blockade on global maritime trade. The significance of this study is tackling to identify possible risks latent in these chokepoints and urging need to build resilient global-supply chain system against various disasters.

Keywords

Global Supply-Chain, Maritime Trade, Chokepoint, Container, Bulk Cargo

MEETING FORMAT*

*Select an option (X).

	Regular Poster Presentation		
	Young Scientist Poster Presentation		
X	Regular Oral Presentation		
	Young Scientist Oral Presentation		
	Symposia		
	Roundtable		

AREAS*

Natural hazards

Seismic
Flooding
Subsidence
Hurricanes
Landslides
Volcanic eruption
Wildfire

		Chemical and petrochemical industry
		Nuclear industry
		New and emergent technologies
Technological and manmade hazards	Х	Transportation
		Natech
		Critical infrastructures
		Cyber attacks
		Terrorism

Complex beyond interactions and ava	Climate change and its impact
Complex hazard interactions and sys- temic risks	Natech
temic risks	Epidemics / pandemics
	Critical infrastructures

TOPICS*

*Select an option (X)

Learning from experience

Social and human sciences for risk

and disaster management

	Organizations, territories and experience feedback
	Expertise and knowledge management
	Weak signals
	Early warning systems

Human, organizational and societal factors
Risk perception, communication and governance
Systemic approaches
Risk and safety culture
Resilience, vulnerability and sustainability: concepts and applications
History and learning from major accidents and disasters
Territorial and geographical approaches to major acci- dents and disasters
Social and behavioral aspects

		Compound/cascading disasters (simultaneous and/or co
		located) and Mega-disasters
		Connecting observed data and disaster risk management decision-making
Cross-disciplinary challenges for inte-		Practical applications of Integrated Disaster Risk Man- agement
grated disaster risk management		Development and disasters
		Build Back Better (than Before)
		Disaster-driven innovation and transformation
		STGs and disaster governance
		Complexity Modeling
		System of Systems / Distributed Systems
Complex systems		Critical Infrastructures
		Probabilistic Networks
	X	Disaster impacts and economic loss estimation
Economics and Insurance		Cost-benefit approaches
		Insurance and reinsurance
		Decision aiding and decision analysis.
		Disaster risk communication
		Ethics.
		Gender
		Responsibility
Decision, risk and uncertainty		Governance, citizen participation and deliberation
		Community engagement and communication
		Scientific evidence-based decision-making, modelling and analytics
		Policy analysis
		Uncertainty and ambiguity
		Multi-criteria decision aid and analysis
		Operational research
		Disaster informatics, big data, etc.
Artificial intelligence, big data and text	1	Deep learning

Artificial intelligence, big data and text _____ data mining

Disaster informatics, big data, etc.
Deep learning
Neural networks
Experts systems
Text data mining

Engineering Models	Numerical modelling & functional numerical modeling Formal models / formal proofs
	Model-based approach
	Safe and resilient design and management.
I	

	Certification and standardization.
	Regulation and legislation.
	Legal issues (scientific expertise, liability, etc.).
	Precautionary principle and risk control and mitigation.

SIGNIFICANCE TO THE FIELD*

Legislation, standardization and implementation

*Select an option (X)

	Demonstrates current theory or practice
	Employs established methods to a new question
	Presents new data
Х	Presents new analysis
	Presents a new model
	Groundbreaking
	Assesses developments in the field, in one or more countries
	Other (Please specify)

EXPECTED CONTRIBUTIONS*

*Select an option (X)

	Theoretical
Х	Applied
	Theoretical and Applied
	Review
	Perspective
	Other (Please specify, e.g. success/failure practices, les- sons learned, and other implementation evidence)