空港舗装建設廃棄物の 全量再資源化方策

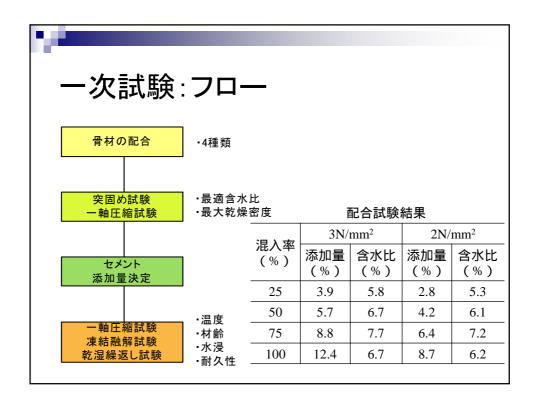
空港施設研究室 八谷·松崎·坪川·湯浅 港湾空港技術研究所 早野·秋元

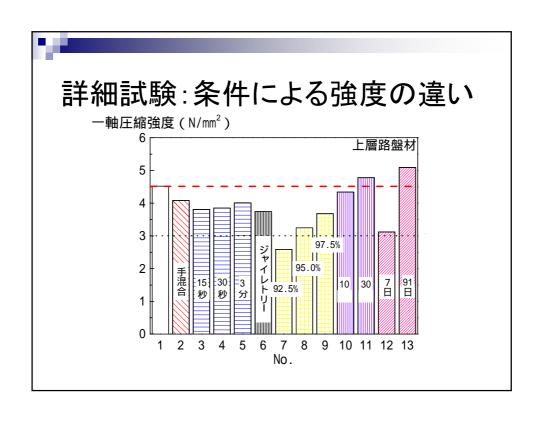
背景•目的

- ■リサイクル法・建設リサイクル法施行
- 空港舗装の建設廃棄物:高品質
 - □アスファルト塊, コンクリート塊
 - □低品質材料の再生利用も必要
- ■現行規定
 - □アスコン・粒状路盤材, 粒状路盤材
 - □全量対応不可能,より有効な利用方法
- ■新たな再生利用方法の検討

対象

- アスファルトコンクリート塊
 - □安定処理路盤材として
 - □表・基層用アスファルトコンクリートとして
- ■コンクリート塊
 - □コンクリート版として
 - □粒状路盤材として




再生セメント安定処理材

- ■材料
 - □ 破砕材:20~13mm, 13~5mm, 5~0mmに分級
 - □ C-40, ポルトランドセメント
- 試験
 - □ 一次試験:混入率100,75,50,25%
 - □ 詳細試験:混入率100%
- 配合試験

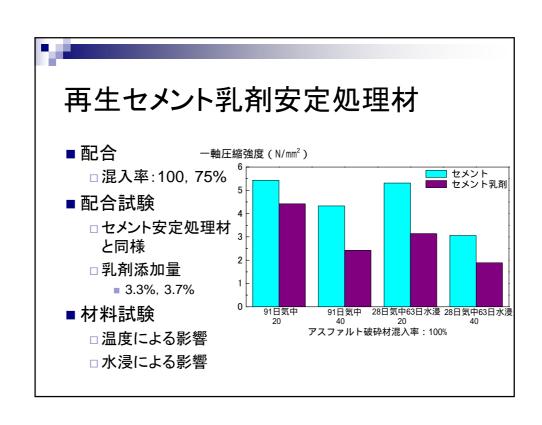
 - □ 一軸圧縮強度(材齢7日) 3N/mm²:上層路盤材, 2N/mm²:下層路盤材
- 一軸圧縮試験
 - □一次試験:温度,材齢,水浸による影響

 - □ 詳細試験:各種条件による特性の違い (温度, 材齢, 混合方法, 混合時間, 締固め方法)
- ■耐久性試験

ь,

再生アスファルト乳剤安定処理材

- ■配合
 - □ 混入率:100,75,50,25%
- ■配合試験
 - □ 修正CBR


80, 45%:上層路盤材

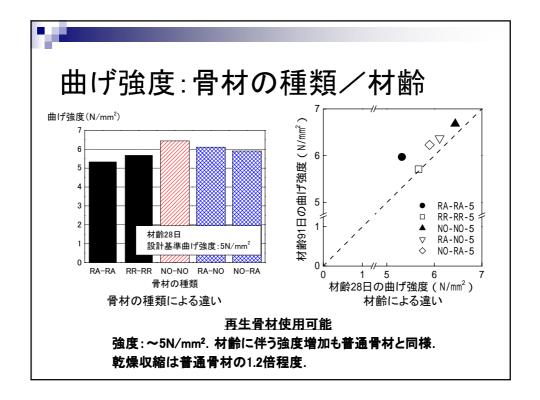
30, 20%:下層路盤材

■ 材料試験

□ 水浸による影響

	所要修正CBR (%)			
項目	上層 路盤		下層 路盤	
	80	45	30	20
アスファルト 破砕材混入率 (%)	25	25	50	-
乳剤添加量(%)	3.1	4.9	7.5	-
最適含水比(%)	4.8	4.5	4.0	-

まとめ:安定処理路盤材


- 再生セメント安定処理材
 - □ 混入率によらず再利用可能. 混入率大→添加量増加. 高温時・長期水浸時 強度低下.
 - □ 混入率100%でも再利用可能. ミキサー混合>手混合. ランマー>ジャイレートリ.
- 再生アスファルト乳剤安定処理材
 - □ 混入率, 乳剤とも少なくする必要. 水浸による強度低下なし.
- 再生セメント乳剤安定処理材
 - □ 再生セメント安定処理材と同様の傾向. ただし, <再生セメント安定処理材.
- 再生加熱アスファルト安定処理材
 - □ 混入率100%でも再利用可能.
- 再生粒状材
 - □ 混入率調整により再利用可能. 混入率少→CBR高. 高温・水浸により低下.

コンクリート塊:コンクリート版

- ■材料
 - □ 再生骨材 (空港, 一般構造物)
 - □ 通常骨材
- 配合強度
 - □ 設計基準曲げ強度 3, 4, 5N/mm²
- ■曲げ強度試験
 - □ 材齢:28,91日
- 乾燥収縮試験
 - □ 打設後約1年間

種類	設計基準 曲げ強度 (N/mm²)	水セメント比 (%)
R A - R A - 3	3	64
R R - R R - 3		60
N O - N O - 3		69
R A - R A - 4	4	47
R R - R R - 4		45
N O - N O - 4		52
R A - R A - 5	5	38
R R - R R - 5		36
N O - N O - 5		41
R A - N O - 5		39
N O - R A - 5		41

結論

- アスファルトコンクリート塊の再生利用
 - □ 安定処理路盤材として セメント安定処理材/アスファルト安定処理材可能.
 - □ アスコンとして 混入率を70%までとして誘導路へ.
- コンクリート塊の再生利用
 - □ コンクリート版として 基本的特性に明確な差なし. 現地試験による詳細検討必要.
 - □ 粒状路盤材として 水浸の恐れがない限り可能.