All Rights Reserved, Copyright(C)2007,National Institute for Land and Infrastructure Management

All Rights Reserved, Copyright(C)2007,National Institute for Land and Infrastructure Management

適用性試験 ・那覇空港(2005年10月)及び新潟空港(2006年9月)で実施 ・高所作業車からの静止画撮影、走行作業者からの動画撮影 ・可視画像も同時に撮影 ・打音調査、コア採取による剥離深さ確認を実施

舗装温度解析

対象都市:札幌,仙台,新潟,東京,大阪,那覇 気象条件:夏季(6-8月),秋季(9-11月)の晴天時,曇天時 解析手法:2次元FEMにより熱伝導,熱伝達,放射を考慮

					<u></u>
短波長 長波長 熱伝達 放射 放射		項目			備考
		アスファルト 混合物	密度	2,361 (kg/m³)	室内試験
日射	の赤外放射		熱伝導率	1.11 (W/m/K)	室内試験
	↑ ↑		比熱	0.89 (kJ/kg/K)	室内試験
			輻射率	0.92	室内試験
アスファルト			日射吸収率	1.0	
18 cm セメント	導熱 構25 cm, 厚さ1 mm		熱伝達率	7.8+4.5 <i>v</i> (W/m²/K) <i>v</i> : 風速 (m/s)	文献
安定処理材 42 cm	L.		密度	2,400 (kg/m³)	文献
l	、断熱面	セメント 安定処理材	熱伝導率	1.20 (W/m/K)	÷++
50 cm			比熱	0.90 (kJ/kg/K)	

結論

>熱赤外線画像により、ある程度の剥離検出が可能.また、 10km/h程度の走行撮影による動画でも検出可能.

▶撮影角度や撮影高さの調節により、グルービングの影響は 無視できる程度となる。

>層間剥離の位置が浅い場合や,昼夜の気温差の大きい晴 天時に舗装温度差は大きくなる.

>気温差,積算日射量,平均風速から,層間剥離に起因する 温度差を推定することが可能。

▶比較的高緯度の空港においても、春から秋にかけて適用可能。