熱赤外線画像による 空港舗装の層間剥離検出法に 関する研究

国土技術政策総合研究所 〇坪川将丈, 水上純一

適用性試験

- ・那覇空港(2005年10月)及び新潟空港(2006年9月)で実施
- ・高所作業車からの静止画撮影、走行作業者からの動画撮影
- ・可視画像も同時に撮影
- ・打音調査,コア採取による剥離深さ確認を実施

熱収支解析による温度差解析

赤外線法が適用可能な気象条件の検討

2次元FEMによる舗装温度解析

入力項目:実際の気象条件(気温, 風速, 日射量) 出力項目:層間剥離に起因する舗装表面温度差

調査当日に発生する舗装温度差予測式の検討都市別/月別の調査可能日数の検討

舗装温度解析

対象都市:札幌,仙台,新潟,東京,大阪,那覇

気象条件:夏季(6-8月),秋季(9-11月)の晴天時,曇天時解析手法:2次元FEMにより熱伝導,熱伝達,放射を考慮

項目			備考
アスファルト 混合物	密度	2,361 (kg/m³)	室内試験
	熱伝導率	1.11 (W/m/K)	室内試験
	比熱	0.89 (kJ/kg/K)	室内試験
	輻射率	0.92	室内試験
	日射吸収率	1.0	
	熱伝達率	7.8+4.5 <i>v</i> (W/m²/K) <i>v</i> : 風速 (m/s)	文献
セメント 安定処理材	密度	2,400 (kg/m³)	文献
	熱伝導率	1.20 (W/m/K)	文献
	比熱	0.90 (kJ/kg/K)	

結論

- ▶熱赤外線画像により、ある程度の剥離検出が可能. また、 10km/h程度の走行撮影による動画でも検出可能.
- ▶撮影角度や撮影高さの調節により、グルービングの影響は無視できる程度となる。
- ▶ 層間剥離の位置が浅い場合や, 昼夜の気温差の大きい晴天時に舗装温度差は大きくなる.
- ▶気温差, 積算日射量, 平均風速から, 層間剥離に起因する 温度差を推定することが可能.
- ▶比較的高緯度の空港においても、春から秋にかけて適用可能。