Study on Effects of Nonlinear Temperature Distribution and Slab Thickness on Thermal Stress of Airport Concrete Pavement

TSUBOKAWA, Y., MIZUKAMI, J. and SAITOU, Y.

National Institute for Land and Infrastructure Management, Ministry of Land, Infrastructure, Transport and Tourism, Japan

Contents

- 1. Observation of 42cm thick concrete pavement Temperature and strain were measured for 1 year.
- 2. Relationship between warping stress and internal stress Thermal stress equation for 42cm slab thickness was developed.
- 3. Relationship between thermal stress and thickness By means of heat balance analysis, temperature distributions and thermal stress of various thicknesses are estimated.
- 4. Comparison of thicknesses

Contents 1. Observation of 42cm thick concrete pavement remperature and strain were measured for 1 year. 2. Relationship between warping stress and internal stress Thermal stress equation for 42cm slab thickness was developed. 3. Relationship between thermal stress and thickness By means of heat balance analysis, temperature distributions and thermal stress of various thicknesses are estimated. 4. Comparison of thicknesses

Contents 1. Observation of 42cm thick concrete pavement remperature and strain were measured for 1 year. 2. Relationship between warping stress and internal stress thermal stress equation for 42cm slab thickness was developed. 3. Relationship between thermal stress and thickness By means of heat balance analysis, temperature distributions and thermal stress of various thicknesses are estimated. 4. Comparison of thicknesses

Contents 1. Observation of 42cm thick concrete pavement Temperature and strain were measured for 1 year. 2. Relationship between warping stress and internal stress Thermal stress equation for 42cm slab thickness was developed. 3. Relationship between thermal stress and thickness By means of heat balance analysis,

- temperature distributions and thermal stress of various thicknesses are estimated.
- 4. Comparison of thicknesses

Comparison of Thicknesses

Design of Airport Concrete Pavement in Japan was revised based on this research results.

Previous design method : Empirical method Current design method : Mechanistic-Empirical method

	Design coverage (traffic volume)			
	10,000	20,000	40,000	
Previous	42 cm			
Current	39 cm	41 cm	43 cm	
Slab Slab beca Current des Slab beca	thicknesses use safety f ign method thicknesses use safety f	a s are 42 cm factors are s s are 39 to 4 factor is not	in all cases same in 3 co 43 cm used.	onditions.

