油が混入したアスファルト混合物中の アスファルトの性状

国土技術政策総合研究所 空港研究部 河村 直哉 坪川 将丈

- 誘導路のAs舗装の表基層を 切削オーバーレイして半年後 に、ひび割れや液体の染出し (異臭)等が発生した
- 原因は不明だが、水以外に、 舗設時に施工機械から油が 漏れ、それが影響した可能性 も考えられる

課題

今後同様の事案が発生し、 その原因を究明したい場合に、 油かどうかを判断する方法がない

目的

コアから回収したアスファルトを 用いて判断する方法を提案すること WT供試体を作製
(油を混入させたケースとさせていないケース)

WT供試体を屋外暴露

WT供試体からアスファルトを回収

針入度試験、組成分析、 示差熱・熱重量分析を実施

油の混入状況

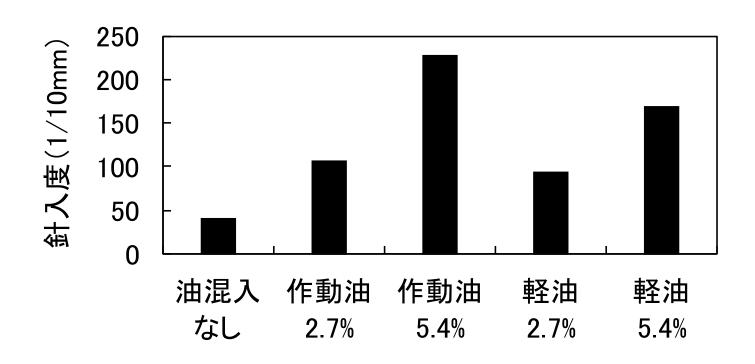
回収アスファルト

材料

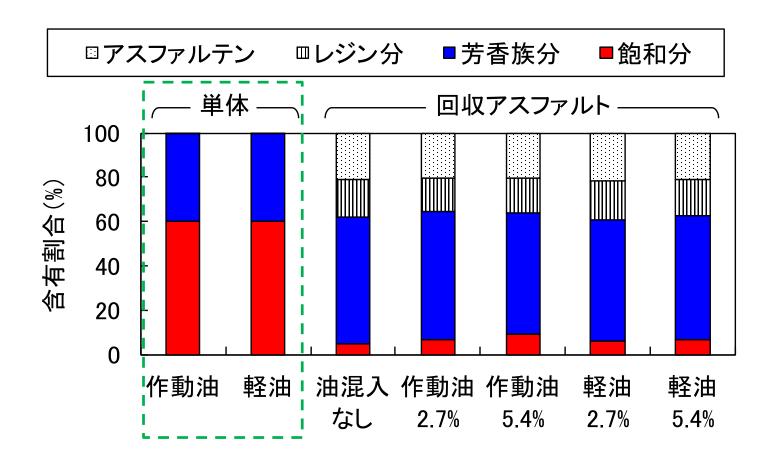
- ・密粒度アスファルト混合物
- -ストレートアスファルト60/80

WT供試体 の種類

供試体呼称		油の種類	As量に対する 油量の割合(%)
1	油混入なし	なし	-
2	作動油2.7%	<i>山</i> 元 新元	2.7
3	作動油5.4%	作動油	5.4
4	軽油2.7%	軽油	2.7
5	軽油5.4%		5.4

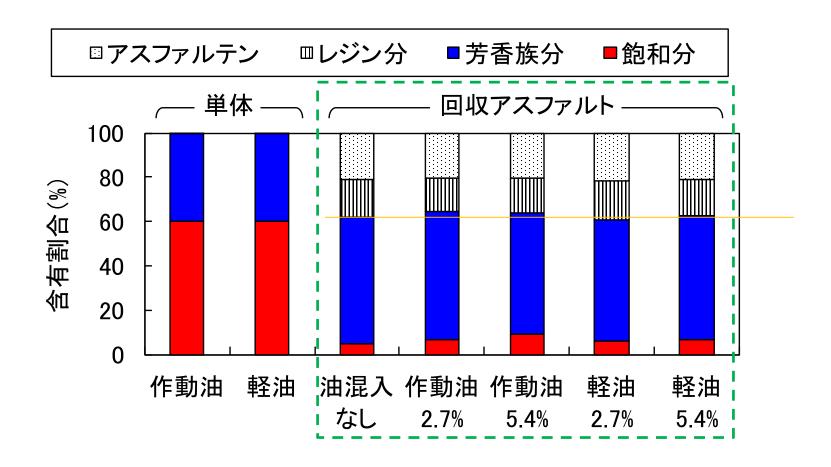

世 性状試験用のサンプル

+	ナンプル呼称	①針入度 試験	②組成分析 ③熱分析
作動油単体		-	0
軽油単体		_	0
	油混入なし	0	0
回収	作動油2.7%	0	0
アス	作動油5.4%	0	0
ファルト	軽油2.7%	0	0
	軽油5.4%	0	0


熱分析(示差熱・熱重量分析)

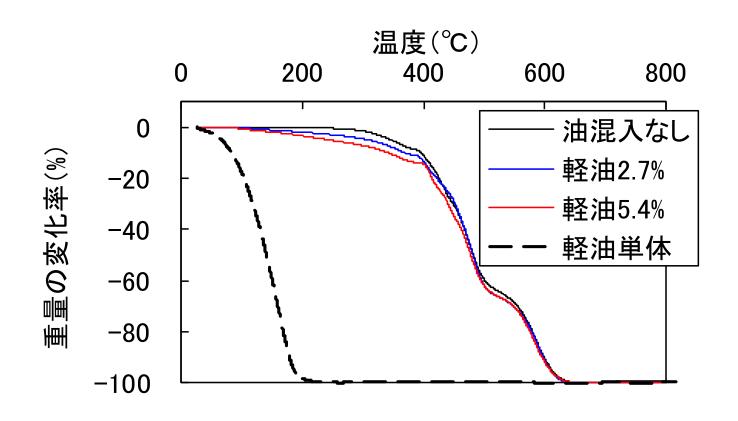
・・・ サンプルを一定速度で昇温させ、 重量の経時変化等を計測する

引針入度試験の結果

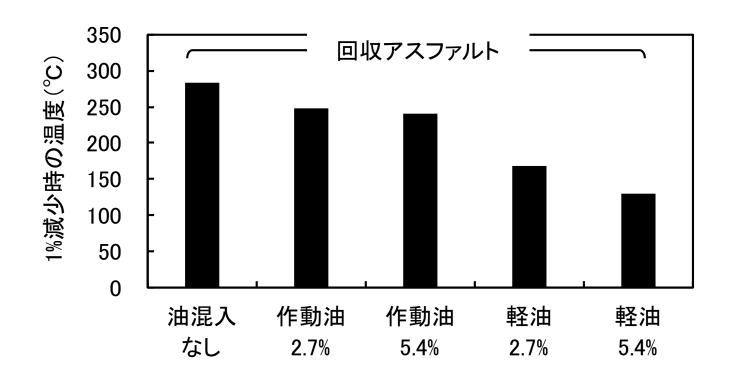


- ・油が混入すれば、針入度は増加
- ・混入量が増加すれば、針入度も増加

単体の油の四成分は芳香族分と飽和分で構成
→ 油の混入で、回収アスファルトの
芳香族分+飽和分が増加すると考えられる


🔲 組成分析の結果

油混入により、芳香族分+飽和分が最大でも2%増加 → 油の混入割合は最大でもAs量の5.4%のため、 油がアスファルトの組成に及ぼす影響は小さかった


熱分析の結果(軽油のケース)

油が混入することで、重量の減少開始温度が低くなる

対象分析の結果 (見) 思想がから

(昇温開始から重量が1%減少した時の温度)

作動油が混入すると、30~40℃低下 軽油が混入すると、110~150℃低下 外観だけでは油の混入有無が分からない場合で あっても、針入度試験と熱分析により、油の混入有無 を判定できる可能性がある。

なお、熱分析に関しては、サンプル重量が数mgと微小であるため、今後、分析の再現性を検証する必要がある。